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Abstract
Low-cost tools, including open source hardware, are changing how research is done and by whom. With 
broadened participation, factors such as the amount, type, and frequency at which data is being collected are 
changing. This shift can pose challenges to interpreting the quality—and ultimately credibility—of low-cost tools 
and their data.

The concept of “fitness for use” can be defined as “the degree to which a dataset is suitable for a particular 
application or purpose, encompassing factors such as data quality, scale, interoperability, cost, and data format” 
(Holdren, 2015). In the context of low-cost tools, we aim to outline challenges and potential solutions related 
to data quality and fitness for use by analyzing the tools themselves, as well as their digital environment, their 
regulatory context, and social context. Building a deeper understanding of how intentionally adopting a fitness for 
use perspective will facilitate not only greater uptake of low-cost tools but potentially more equitable access to 
science.
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Introduction
Opening access to full participation in scientific research has many societal benefits, yet participation in science 
is often limited to recognized experts with access to funding, dedicated training, specialized tools, and other 
institutional resources. Citizen science is broadening access and inclusion in who can do science; alongside 
citizen science, low-cost tools (including open source hardware) has potential to open up both the processes and 
products of scientific research. 

Compared to tools traditionally used for scientific research, low-cost tools are more available and accessible—a 
factor relevant to those communities typically on the outside of most research activities. However, there is 
a perception among some practitioners, researchers, and the policy community that the decrease in cost 
corresponds to a decrease in data quality. As Lewis et al. (2018) observe related to low-cost air quality sensors:

 “Based on the scientific literature available up to the end of 2017, it is clear however that some 
trade-offs arise when LCSs are used in place of existing reference methods. Smaller and/or 
lower cost devices tend to be less sensitive, less precise and less chemically-specific to the 
compound or variable of interest. This is balanced by a potential increase in the spatial density 
of measurements that can be achieved by a network of sensors.” 

In addition, data users sometimes question whether the new types of stakeholders involved in low-cost tools 
have the requisite expertise to create instruments, conduct research, and interpret results. 

Together, these concerns have resulted in some doubt in the research community on the value of low-cost tools 
for use for a wide range of purposes, including research and decision-making (e.g. regulatory purposes). Yet with 
new research fields opening up and with shifts in the use and users of research tools, traditional mechanisms 
and processes to assess, certify and communicate data quality may no longer be sufficient for a wide range 
of low-cost tools that are fit for different uses. In addition, the rapid change and customization of low-cost 
tools and the use of these tools means that traditional processes for evaluating tools and their data may not 
be applicable, are too rigid, or are cost prohibitive.  Without a critical review of how new tools are adopted and 
valued, credentialized users of scientific data may (inadvertently) act as “gatekeepers”–in effect controlling the 
use of data for science from non-traditional tools and their users, in a way that limits their impact. For example, 
EPA regulates air quality on 24-hour averages, but many community science groups believe it is critical to study 
shorter temporal periods of higher exposure (Ottinger, 2010).

Here, we describe how a “fitness for use” perspective helps us assess, improve, and communicate the data 
quality associated with low-cost tools. We begin by describing how low-cost tools are used, and then unpack the 
concepts of data quality and “fitness for use” as they relate to low-cost tools. Then we describe the challenges 
that low-cost tools present for traditional assessments of data quality, and suggest specific solutions to address 
these challenges with a “fitness for use” perspective. Our goal is to identify specific policies and strategies that 
can help create a culture of confidence and reduce uncertainty around low-cost tools, to benefit tool designers 
and builders, tool users, and potential data users, including practitioners, researchers, and decision-makers. 
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Key Terminology

Low-Cost Tools

Low-cost tools are becoming more and more prevalent as alternatives to expensive and 
inaccessible equipment traditionally used for scientific applications. These tools span a range of 
disciplines, and include tools that are commercial or off-the-shelf, customizable, do-it-yourself 
(DIY), or obtained as kits to be assembled. Low-cost tools take many forms: environmental 
sensors, laboratory instruments, medical devices and biometric sensors, accelerometers, 
microscopes, CubeSats, robots, drones (Science Stack: Tools within Reach). Although some 
tools are incrementally lower cost, most are significantly so, to the extent that they significantly 
broaden who can access and use them (Parker & Novak, 2020).

Throughout the publication we use “tool” as a descriptor of physical devices; this term can be 
considered interchangeable with “hardware.”

Open Source Hardware (OSH)

Open source hardware are physical tools whose design is “publicly available so that anyone can 
study, modify, distribute, make, and sell the design” (Definition (English), n.d.). Because open 
source hardware tends to be significantly cheaper than proprietary alternatives, we include 
open source in our general consideration of “low-cost” tools that accelerate research, broaden 
participation, and lead to other beneficial outcomes. To a greater extent than proprietary tools, 
open source hardware enables collaborative participation in the design of the tool, and allows 
users to replicate, repair, and customize the tool. 
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Background

FITNESS FOR USE

The concept of “fitness for use” can be defined as “the degree to which a dataset is suitable for a particular 
application or purpose, encompassing factors such as data quality, scale, interoperability, cost, and data format” 
(Holdren, 2015). A fitness for use perspective is particularly helpful when using low-cost tools for science, 
because different stakeholders may use any given tool or data set for different goals. Beginning with an intended 
use (see Figure 1), a data user can define the requirements needed for that intended use, and if all defined 
requirements are met, the data can be considered fit for use. For example, a water quality sensor used to enforce 
regulations will require high levels of precision and accuracy. However, when used for exploratory research or by 
communities interested in local monitoring, high precision and accuracy may not be essential, and accessibility, 
cost-effectiveness, and timeliness may be. 

Figure 1 

The spectrum of citizen science data use.

Image source: From Parker, A. & Dosemagen, S. (2016). Environmental Protection Belongs to the Public: A Vision for Citizen 
Science at EPA. National Advisory Council for Environmental Policy and Technology (NACEPT). 

https://www.epa.gov/sites/production/files/2020-04/documents/nacept_cs_report_final_508.pdf
https://www.epa.gov/sites/production/files/2020-04/documents/nacept_cs_report_final_508.pdf
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Fitness for use is becoming more recognized in research and policy 
communities. For example, the 2015 memorandum Addressing 
Societal and Scientific Challenges through Citizen Science and 
Crowdsourcing highlights fitness for use as a core principle for using 
citizen science and crowdsourcing to accomplish agency missions: 
“Recognizing that a ‘one-size-fits-all’ quality-assurance approach 
will not work for all projects, Federal agencies should apply the 
principle of ‘fitness for use,’ ensuring that data have the appropriate 
level of quality for the purposes of a particular project” (Holdren, 
2015). The United States Environmental Protection Agency (EPA)’s 
National Advisory Council for Environmental Policy and Technology 
(NACEPT) charts (Figure 1) a spectrum of uses that citizen science 
data—often collected via the use of low-cost tools—are fit for, ranging from community engagement to regulation 
and enforcement (Parker & Dosemagen, 2016).

Factors beyond those traditionally used in data quality assessments are important here; implementation 
conditions, or the “enabling environment,” can allow otherwise limited data to become more useful for a range 
of purposes. The enabling environment is a critical opportunity to expand the use of low-cost tools for accessible, 
relevant, and novel science. 

How Low-Cost Tools are Used
Low-cost tools are improving the research process for professional scientists in traditional institutions by reducing 
costs to create greater efficiency and return on investment, improving reproducibility, and catalyzing new fields 
of scientific growth, including by enabling exploratory research (Maia Chagas, 2018; Pearce, 2017). However, 
the true power of low-cost tools might lie in their potential to broaden who participates in scientific research. 
By increasing availability and access for communities to research questions of interest to them, current gaps in 
monitoring and research (for example, localized air and water quality) might be addressed.

The goal of using a fitness for 
use perspective is to move 
from a one-size-fits-all approach 
to data quality, to an approach 
that recognizes a wide range of 
potential uses, each associated 
with different data quality 
requirements. 
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Low-cost tools change the amount, type, and frequency of data. 

 

Figure 2

Low-cost tools are expanding where science happens; enabling research and innovation by individuals, by 
community based organizations, as well as in low to middle-income countries. In addition, low-cost tools 
for environmental monitoring specifically enable different approaches to data collection and analysis, such 
as community monitoring, and can ultimately help inform regulators of the lived experiences of community 
members in an area affected by pollution—instead of, or in addition to, traditional types of data (Gabrys 
et al., 2016). For example, Purple Air, a low-cost air quality sensor for particulate matter, is being used by 
citizen scientists to help enhance local air quality estimates from data derived from National Aeronautics 
and Space Administration (NASA) satellite observations (Doraiswamy, n.d.). Low-cost tools are used in crisis 
response at both global and local levels, including for COVID-19 (Bowser et al., 2021). Some low-cost tools, 
like PocketLab, are specifically designed for education, and support Science, Technology, Education, and 
Math (STEM) learning goals (PocketLab: Science Everywhere, n.d.).
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Unpacking Data Quality and Fitness for Use

Data Quality
Defining and communicating data quality is complex, and often entails “a multifaceted evaluation of states 
such as completeness, validity, consistency, precision, and accuracy” (Wiggins et al., 2011). For example, at a 
workshop on low-cost air quality monitors, experts identified several dozen defined performance criteria that 
relate to data quality when assessing particulate matter pollution (Williams et al., 2019). The following common 
set of data quality attributes are found across many frameworks. These include:

• Accuracy: How well does the data reflect reality? 

• Precision: Does a tool produce the same data each time under the same conditions?

• Completeness (or comprehensiveness): Does the data meet sufficient expectations of what’s needed to 
answer a question?

• Timeliness (or latency): Are the data available when needed?

• Validity (or conformity): Are the data available in a format that aligns with established standards or meets 
other articulated needs? 

• Transparency: Can communicating the initial goals of data use and the extent of quality assessments help 
ensure trust, responsibility, and impact?

Assessing Data Quality of Low-cost Tools:  
Challenges and Solutions

With a fitness for use perspective, the key challenge is ensuring and documenting the appropriate dimensions of 
data for different uses. In this process, a number of factors need to be considered. These include challenges and 
solutions related to:

1. The tools themselves: the design, maintenance, and manufacturing of low-cost tools, including their 
interactions with the physical environment; 

2. Their digital environment: the interaction (interface) between the physical (hardware) and digital 
(software) components of the tool;

3. The regulatory context: processes and protocols for assessing data quality and appropriate use; and, 

4. The social context: including social structures for communicating data quality and uses.
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Figure 3

The increased opportunity of more and different uses and users also means increased complexity in assessing 
and communicating data quality. These four challenges and their associated solutions help match data quality with 
the fitness for use.

 The Tools Themselves

Challenges
A range of challenges relate to the design, maintenance, and manufacturing of physical tools, and their 
performance in their physical environment.

When the tools available do not meet the data quality requirements of the intended use(s), there is a “mismatch” 
between the need for a research tool and its availability. A mismatch can also occur when tools are too expensive 
or otherwise inaccessible for the intended use.

Technical considerations around the physical environment in which a tool is created and used influence how 
different component parts perform. In addition to sensitivity across different environmental conditions, like 
varying temperatures or humidity levels, successful performance of a particular tool can also depend on the effect 
of weather, its power requirements, size, and other factors. For example, the use of laser counters commonly 
used in low cost air quality sensors such as those manufactured by Plantower Technologies to estimate 
particulate matter are sensitive to both humidity and temperature, as well as ambient wind conditions. The results 
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from lab conditions are not necessarily directly transferable to field conditions—necessitating multiple tests under 
different conditions to provide the full picture of how tools are reliable under different conditions. 

Solutions

Figure 4 

The Tools Themselves

Mismatches can be minimized by investing in solutions that help improve the design, production, and use of 
low-cost tools themselves, including prioritizing open source designs and evoking local knowledge and expertise.

Prioritize Open Source Design for Tool Development

As open source hardware relies on collaborative participation in design, evaluation, and sharing, using open 
practices can address mismatch in cost by driving down both design and maintenance costs to help provide 
economic savings of 87% compared to equivalent proprietary tools (Pearce, 2020). Open source practices also 
encourage customization through the use of open licenses. This practice “enables the design [of a tool] to be 
modified for very specific uses” (Niezen et al. 2016). For example, someone using EnviroDIY’s Mayfly Data 
Logger can customize the device to have a GPS add-on if their intended use requires location data (Stroud Water 
Research Center, n.d.). From a legal perspective, this is made possible by the use of the CERN Open Hardware 
License 1.2, which clearly spells out acceptable provisions for re-using the original blueprint to create derivative 
devices (CERN Open Hardware License, n.d.).

Open source is an opportunity for improved scientific reproducibility, and therefore data quality (Hill, 2021). 
Open source hardware, together with improved documentation, can make it easier for scientific protocols to be 
understood and replicated, increasing replicability, transparency, and trust. For example, the Oxford University’s 
Penguin Watch program uses open source cameras to monitor penguin populations in Antarctica. Because they 
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used open source tools, researchers were able to deploy more cameras and, as a result, improve the sample size 
and replicability of the research and increase confidence in the results (Hill, 2021). 

Support Local Knowledge to Leverage Existing Tools

Local environmental, social, or economic conditions can significantly alter a tools’ ability to generate data quality 
that is fit for purpose, often requiring specific tailoring or modification to the tool itself or the data generated 
to yield useful data. For example, philanthropically donated equipment from higher-resourced regions to lower-
resourced regions (e.g. low- and middle-income countries) can be both expensive and ineffective; up to 50% 
of donated medical devices become unusable due to a lack of locally available maintenance and the inability to 
obtain spare parts (Garmendia et. al, 2020). 

The use of low-cost tools, and in particular, open source hardware, benefits from local knowledge and resources 
to provide both necessary and long-term development and support. For example, during the COVID-19 pandemic, 
low-cost tools, appropriately modified by local know-how, were critical when responding to a pressing need; 
customized designs of medical devices were created locally using 3D printers and locally available materials. 
These tools allowed local experts to assess data quality and navigate local standards and regulations to ensure 
ethical, safe and legal use (Longhitano et al. 2020; Mueller et al., 2020), effectively reducing a serious shortage of 

ventilators. 

Figure 5

Image Source: “Microscope Blender Trio” by OpenFlexure is licensed under CC BY

https://build.openflexure.org/openflexure-microscope/stl-selector-test-version-2/images/MicroscopeBlenderTrio.png
https://openflexure.org/projects/microscope/
https://creativecommons.org/licenses/by/2.0/
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Case Study 1: Open Source Microscopes & Medical Diagnostics
Low-cost microscopes come in many different forms, including foldable paper microscopes that 
cost $1 in parts, smartphone plugins that cost between $5 and $20, and automated, 3D printable 
microscopes available at a range of price points (Parker et al., 2021). 

Although these microscopes are more accessible and affordable, these microscopes do not always 
meet sufficient data quality standards for all uses. Validation studies show that Foldscope produces 
efficient and high quality data for tick identification (Parada-Sánchez et al., 2018) but not medical 
diagnostics applications (Yong, 2019).

For medical diagnostics, such as screening blood smears for pathogens, images need high 
resolution and a large field of view. A major challenge to using low-cost microscopes for medical 
diagnostics is the inherent trade-off between resolution and field of view that typically requires 
expensive technical features to bridge (Switz et al., 2014).

To enable utilization for medical diagnostics, a team of researchers in the UK and Tanzania used open 
source design to create OpenFlexure, a low-cost, customizable microscope under trial for malaria 
diagnosis. The microscope was designed with a flexure mechanism for precise stage movement. 
This feature means that OpenFlexure can take automated images at a low field of view and high 
resolution and stitch them together to produce a larger field of view, successfully addressing the 
technical barriers that exist for other low-cost microscopes (Collins et al., 2020).

The microscope was co-designed by researchers in the UK and Tanzania so local knowledge was 
used to ensure that the microscope was fit for use in Tanzania (Stirling et al., 2020). This led to the 
design of an almost entirely 3D printed microscope, so that most parts can be produced locally. The 
use of open source design also enables users of the tool to customize technical features for their 
intended use, such as swapping out the lens for different magnifications. 

With appropriate forethought in design and support, low-cost tools may provide more sustained useful data than 
higher cost alternatives. Low-cost, and in particular open source, tools can allow for access to local knowledge, 
and the transparency and openness required to understand and customize solutions.
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The Digital Environment

Challenges
A range of challenges relate to the interaction between the physical (hardware) and digital (e.g. software) 
elements of a particular tool. 

As low-cost tools become widely used by more people across different fields, there is an increase in the amount 
of the data being produced (e.g. terabytes, petabytes) (Sharma et al., 2015). The types of data collected are 
also expanding with more novel tools, diverse research applications, and different user groups. The frequency 
of data collection is also increasing, with more real time data monitoring enabled by the Internet of Things (IoT) 
(Zaslavsky et al., 2013).

As amount, type, and frequency increase, data can become more difficult to understand and access. Therefore, 
data produced by low-cost tools may require more complex protocols and softwares for Quality Assurance (QA) 
and Quality Control (QC) than higher-cost versions; without these, these data may be less useful or less credible. 
As another related challenge, scientists using low-cost tools may lack access to data infrastructure that follows 
FAIR (Findable, Accessible, Interoperable, Reusable) guidelines, or data analysis tools (FAIR Principles, 2021). 
Infrastructure, strategies, and tools to store, retrieve, extract, and analyze data are increasingly available (e.g. R 
for statistical analysis). However, these are not always accessible to groups like citizen and community scientists, 
inhibiting their ability to analyze and act on data produced from low-cost tools.

Solutions
Figure 6 

The Digital Environment
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Once tools are fully developed and available, the usefulness and credibility of the tool’s data is facilitated by 
how the data it produces interacts with other relevant data. To address barriers related to the diverse data sets 
produced by low-cost tools, it is important to have open access to software tools to help improve data quality, and 
access to repositories for storing and retrieving data. 

Software to Improve “Big” Data Quality

The availability of Artificial Intelligence (AI) and Machine Learning (ML) techniques allows data from low-cost 
tools to be transformed to improve data quality, increasing the potential reliability of these data and increasing 
their fitness to answer research questions. For example, the development of Next Generation Sequencing tools 
has dramatically reduced the cost of DNA and RNA sequencing (ThermoFisher Scientific, n.d.). These tools are 
expanding who can afford to do sequencing (including smaller labs or research institutes), and what research 
questions scientists can ask (including more population and exploratory-based questions). Taking advantage of the 
increased volume of sequences in repositories such as GenBank, an open database run by the National Institutes 
of Health (NIH), neural network software has improved the processing of the shorter and more error prone 
sequences generated by low-cost nanopore technology. This leads to improved accuracy at higher throughput 
(Bowden et al., 2019). 

Promote and Expand Access to Open Data Repositories 

Large, open, and accessible data repositories are making many kinds of data more useful, including data 
produced from low-cost tools. Such data repositories can be dedicated to individual kinds of tools such as specific 
kinds of air quality monitors (e.g. PurpleAir.com, Safecast) (Purple Air, n.d.; Safecast, n.d.). The repositories also 
can aggregate across different sources of data. Biodiversity occurrence records hosted by the Global Biodiversity 
Information Facility (GBIF) include data from low-cost sensors—camera traps—along with citizen science apps, 
professional field observations, and digitized museum specimens (Global Biodiversity Information Facility).

Open data repositories can be especially important for low-resourced contributors and users. First, they can 
provide a resource for storing data that others can access beyond the initial project database, elevating access 
and impact. Second, if similar research is included in the same repository, more modest data generating activities 
can be combined with the effort of others through data harmonization efforts or meta-reviews. This can increase 
the value of data produced by low-cost tools and thus the credibility, especially when the platforms contributing 
to a repository have established QA/QC mechanisms in place (see Case Study 2). 

Associated metadata and licensing allow for interoperability and access for diverse users, as well as the legal 
grounding required for data reuse (Bowser et al., 2020). The promotion of citizen science data sharing practices by 
authorities such as NASA can help set norms for a range of open source science communities to follow (Amos et 
al., 2020). It is also important that these databases include well-documented information about the intended use 
context. The Findable Accessible Interoperable and Reusable (FAIR) data framework is one of the common sets of 
standards that is leveraging documentation to enhance data sharing and effective reuse for science, though—like 
open data ideals—realizing the FAIR principles can be difficult to achieve in practice.  
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Case Study 2: Big Biodiversity Data Verification and Integration 
Simple biodiversity observations form the basis of much ecological research and monitoring 
efforts. With the wide availability of low-cost tools like camera traps, along with smartphones and 
digital cameras, there is significant increase in interest by the traditional research community as 
well as the general public in leveraging these technologies to generate data valuable to research 
and conservation outcomes.

Figure 7

Image Source: Burne, Clayton. Lion and Camera Trap. n.d. Retrieved shutterstock

To unlock the value of data collected through these devices, the use of “nature” images as 
scientific data requires accurate interpretation of the biodiversity in the images, often using a 
“crowd-sourcing approach” (Goodchild et al., 2012). AI algorithms are also being developed to 
assign identification. In both cases, an engaged community of biodiversity experts is required 
to oversee and verify the specific identification of the AI models, by labeling data for training 

https://www.shutterstock.com/image-photo/lion-camera-trap-314483288
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purposes, as well as by providing direct identifications on images. Often, both the use of 
tools to collect images and the interpretation of images to generate data is performed by 
citizen scientists. The mobile application iNaturalist supports in-app crowdsourced verification 
through a multi-party review process that elevates an observation from “casual” to “research 
grade,” and is the cornerstone of data quality for these tools (iNaturalist, 2015). Platforms like 
Zooniverse.org support a number of projects that involve volunteers in labeling, classifying, 
or annotating images of biodiversity from camera traps.

Once a certain quality threshold is reached, many citizen science projects share data with 
the Global Biodiversity Information Facility (GBIF) (Boone & Basille, 2019). The whole data 
production pipeline, from the users of “cameras” who take and upload still images or videos 
to the research community that uses the data for science, requires validation. In addition 
to identification and verification processes, training materials—like GBIF’s guide to best 
practices for publishing camera trap data—provide informal standards or guidelines that 
researchers can adhere to (Cadman & González-Talaván, 2014).

Relying on crowdsourcing to add value requires platforms that not only provide digital 
tools for scientific workflows, but infrastructure for managing and supporting online 
communities. To build a robust and efficient data verification process, iNaturalist provides 
social structures such as moderated comment sections which enable conversations between 
those knowledgeable about species and those eager to learn. Data filters allow community 
members who want to specialize on specific taxa or locations to easily focus on images 
meeting their criteria (for example, “bees from Spain”). Zooniverse has also designed a 
number of opportunities for social interaction and community support, including a general 
“talk” discussion forum as well as specific “talk” components to each hosted project’s 
page (Zooniverse Talk, n.d.). Building on these examples to replicate their success requires 
investment in both technical infrastructure and social structures.
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The Regulatory Context

Challenges
Standards developed by governmental agencies, or international professional organizations such as the 
International Standards Organization (ISO) or Institute of Electrical and Electronics Engineers (IEEE) (International 
Standards Organization, n.d.; Institute of Electrical and Electronics Engineers Standards Association, n.d.) often 
oversee and regulate the assessment of tool performance. Mandatory standards for data quality can sometimes 
be helpful by revealing a clear pathway toward use of tools (e.g. for regulatory purposes) or accelerating the 
development and adoption of new tools. At the same time, these same standards can become a boundary that 
can be unfit or inaccessible to the users of low-cost tools. 

Solutions

Figure 8  
The Regulatory Context

Solutions to these challenges could include focusing on technology agnostic standards, evaluating or assessing 
low-cost tools in a dynamic and open way, and brokering partnerships between tool designers on one hand, and 
tool producers on the other.

Develop Tiered and Technology Agnostic Standards and Frameworks

A tiered evaluation protocol for low-cost tools, similar to the EPA’s four-tiered quality assurance criteria, could help 
assess data quality and fitness for use for different use cases. Tiered evaluation criteria offer tool creators and 
users an opportunity to articulate a particular use case, and document whether or how performance aligns with 
that particular use. Users can then select or customize tools to fit a similar use based on the understanding of 
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contextual standards and requirements. For example, laboratory calibration may be necessary for an air quality 
sensor used in extreme weather conditions, but not for basic outdoor monitoring in a temperate location.

When developing standards and assessment methods based on fitness for use, it is important to continue to use 
a “technology agnostic philosophy” (Duvall et al., 2021). Creating standards that are technology agnostic requires 
defining data quality in terms of standards for an intended use, instead of focusing on the absolute performance 
of the technology itself. This would allow for the standards and methods to be applied to any type of similar 
technology (Duvall et al., 2021). 

Figure 9

Source Image: “Making air quality sensing balloons at HackPittsburgh” by thelagged is licensed under CC BY-NC-SA 2.0

For example, instead of standards for a specific type of air quality sensor, like an electrochemical sensor, a 
standard could be linked to a particular use case, such as regulatory enforcement or exploratory research. 
Intermediaries can play important roles in working with regulatory bodies to make such standards accessible to 
tool manufacturers and users, as explored in depth below.  

https://www.flickr.com/photos/25648105@N03/5603187711
https://www.flickr.com/photos/25648105@N03
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich
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Third Party Evaluation and Assessment

Rigorous, transparent, and accessible testing and assessment of a tool under a range of conditions by a 
credible and neutral testing agency can build trust and confidence in the tool’s data. Of particular value can 
be comparative testing of different tools under similar conditions, allowing users to compare and understand 
which tools might be of greatest value to their research. Government agencies and international organizations 
such as the International Standards Organization (ISO, see Case Study 1) and the International Electrical and 
Electronics Engineers (IEEE) can help by setting standards to assess data quality and tool performance. The 
State of California’s South Coast Air Quality Management District has developed a lab dedicated to evaluating a 
large number of air quality tools and made the results of these analyses available for users to review (see Case 
Study 3). In addition to government agencies and other institutions, expert communities can be effective at 
assessing and evaluating the quality of data of low-cost tools through different mechanisms of peer review. Many 
of the same journals that publish information on tool designs also publish information on testing under different 
scenarios. For example, JOH is an open access, academic venue for publishing peer-reviewed articles including 
hardware metapapers. These papers provide detailed descriptions for tools used in areas as diverse as canine 
operant conditioning to innovations in 3D printing (Arce & Stevens, 2020; Delmans & Haseloff, 2018). Metapapers 
include discussions of quality control, provide links to external design files for additional transparency and 
assessment, and—like research articles—are peer-reviewed. 

Social platforms such as WILDLABS are another model of informal peer review for low-cost tools; platform 
members can post information on the tool’s intended use for audiences like educators or citizen science 
volunteers (Wildlabs.net, n.d.). Though often dubbed “informal,” particularly compared to regulatory compliance 
reviews, the critique that happens in these venues is a legitimate form of community peer-review that should be 
regarded as trustworthy for many uses. Academic peer review and community-based review processes may be 

particularly helpful in cases where fitness for use does not align with existing regulatory standards.
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Case Study 3: Monitoring Air Quality
Before the rise of low-cost air quality sensors, air quality monitoring of critical pollutants 
was limited to government operations for regulation and compliance. Although government 
monitoring provides absolute numerical value in relation to regulatory standards, it has 
location and cost limitations. For example, traditional air quality monitors for particulate 
matter (PM) could cost over $100,000, and, Federal Reference Methods or Federal Equivalent 
Methods could cost up to $10,000 (Levy Zamora et al., 2018). In addition, there are not many 
of these monitors, meaning that there are significant gaps in their coverage. 

Figure 10

Image Source: “PM2.5 Air Quality Sensor and Breadboard Adapter Kit - PMS5003” by adafruit is 
licensed under CC BY-NC-SA 2.0

In recent years, the price of air quality sensors has gone down (Morawska et al., 2018). 
Although the EPA considers “low-cost” sensors to be less than $2500, some personal and 
community monitoring sensors are less than $100. Data can be collected in diverse locations 
by different types of people, including individuals with no formal training in environmental 
monitoring. Many low-cost sensors provide measurements which reliably indicate general 
trends and patterns but are less accurate than traditional monitoring’s absolute numerical 

https://www.flickr.com/photos/35434449@N08/27678963859
https://www.flickr.com/photos/35434449@N08
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich
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measurements; these “indicative” measurements can provide data of sufficient value on 
local patterns and changes in air quality data for many community uses (Gabrys et al., 2016). 
Additionally, simultaneous, large quantities of lower precision air quality monitoring can 
produce high resolution air quality maps, can ground-truth other datasets, and may close 
gaps in coverage. 

In order to adapt to a paradigm shift towards expanded air quality monitoring, new processes 
and protocols for assessing data quality are needed. Traditional evaluation and assessment 
methods often require access to expensive benchmarking instruments (e.g. Federal 
Reference Methods), extensive laboratory studies, or long testing durations. These methods 
require a high level of expertise, along with significant monetary, physical, and professional 
resources. In fact, in one review that analyzed 57 studies on low-cost air quality sensor 
evaluation, only 5 studies were found to use existing EPA and European evaluation protocols 
(Morawska et al., 2018). Stakeholders also identified lack of performance targets for non-
regulatory use cases as a barrier to successful comparison of sensors and, ultimately, use 
(Williams et al., 2019).

A number of solutions are emerging to address these barriers. For example, the State of 
California’s South Coast AQMD Air Quality Sensor Performance Evaluation Center has 
developed protocols for using and evaluating low-cost air quality sensors in community 
monitoring as well as suggestions for testing outdoor community monitors. The South Coast 
AQMD has published results on evaluations of various air quality tools that can be publicly 
accessed by new types of data users and tool users, and EPA has created a website with 
evaluation results (Air Quality Sensor Performance Evaluation Center, n.d.; United States 
Environmental Protection Agency, n.d.). These efforts demonstrate the importance of 
expanding traditional testing to meet a range of low-cost tools use cases, and show how an 
intermediary—in this case, the South Coast AQMD—can be helpful in interfacing between 
community groups on one hand, and regulatory authorities like EPA on the other.
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The Social Context

Challenges
The social context of tool and data use can be very important to the resulting data’s fitness for use. For example, 
there are many social structures in place for communicating data quality and appropriate use of different tools. 
Social structures can be formal—such as a user group dedicated to developing and sanctioning data quality 
standards, or informal—such as loose networks of users who interact via social media, conferences, or other 
shared activities. These social structures can facilitate tool distribution and acceptance, or prevent uptake. 

In addition to questions about data quality from low-cost tools, professional scientific communities may doubt 
that users of low-cost tools are able to use them. Similar to perceptions of citizen or community science, some 
professional scientific communities question the ability of non-expert volunteers to conduct objective research in 
line with scientific standards (Kosmala et al., 2016). This can limit the impact of a tool or research project, and is 
often reinforced by the lack of social structures to bring different stakeholders together in discussions around data 
quality, fitness for purpose, and trust. 

Solutions
Figure 11 

The Social Context

To build trust and credibility, improved communication is needed across a range of stakeholders creating, using, 
and acting on research conducted with low-cost tools. Shared discussions should include topics such as data 
governance, data management strategies, and effective QA/QC.
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Improve Communication throughout the Data Lifecycle

Tool developers, manufacturers, tool users (including both “traditional” tool users like professional scientists, and 
“new” tool users like environmental justice groups), and data users would better understand the capabilities of 
low-cost tools with improved communication on how data are managed for quality across the entire life cycle 
of data use—from creation to storage and use. Better cross-sector communication would allow each of these 
groups to develop an understanding and confidence in how data is being used, what performance metrics are 
important for manufacturers to provide information on, how the tools should be calibrated, and other factors that 
are important in developing credibility around low-cost tools. 

Data stewards or other intermediaries can play an important role in facilitating communication between these 
groups and ensuring that guidelines are enforced, as well as recommending improvements to data governance 
processes. Public Lab is an example of an organization that plays a data steward role for environmental justice 
work (Public Lab, n.d.). For example, during the BP 2010 oil spill in the Gulf of Mexico, Public Lab brought 
together tool designers to help build low-cost, open source “community satellites” to map the coastline affected 
by the oil spill. The organization worked closely with grassroots partners to develop scientific and technological 
skills and produce high-resolution mapping of the coastline. Public Lab also engaged with environmental 
advocates and other data users to generate impact around the issue, including their data being featured in 
news sources such as BBC and New York Times. By facilitating communication and collaboration between tool 
developers, tool users, and data users, Public Lab ensured effective data governance and the production of high 
quality data for their intended use.

Figure 12

Source Image: “Public Lab Barataria Trip V boat” by eustatic is licensed under CC BY-NC-SA 2.0

https://www.flickr.com/photos/75792625@N00/14039110521
https://www.flickr.com/photos/75792625@N00
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich
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Support Social Structures that Build Social Capital

Users of low-cost tools benefit from the support of social structures that build social capital and trust. Academic 
and government researchers typically leverage professional associations for knowledge sharing. New users of 
tools, especially those outside traditional research institutions, also benefit from social networks to build and 
access the knowledge around specific research areas or specific tools. In agricultural settings, for example, 
farmers can benefit from informal social knowledge networks, relying on known trusted relationships among 
users when choosing to adopt new technologies to monitor and manage tools to enhance crop production (Shang 
et al., 2021; Wang et al., 2020).

Some platforms evolve into “knowledge commons,” where members can share resources on new low-cost 
tools, guidelines on best practices around fitness for different uses, recommendations on navigating regulatory 
processes, and information on funding opportunities. The impact of these platforms is illustrated by WILDLABS, 
a community platform and social network where conservation scientists, engineers, data scientists, and other 
related professions openly share information on how innovative technology and data can be applied to a range 
of conservation issues. This network helps increase the adoption of low-cost tools. For example, a community 
of users and builders that includes WILDLABS coalesced around the open source acoustic monitoring device 
AudioMoth, helping to create shared understanding and elevating its impact on conservation (AudioMoth, n.d.; 
Lahosz Monfort et al., 2019). 

Regardless of type, effective social structures often include both “informal” communities, such as loosely 
connected networks of tool creators and users, and “formal” institutional actors, such as government and 
industry partners. Such a structure is demonstrated by the Federal COVID 3D Trust, led by federal authorities 
including the U.S. Food and Drug Administration (FDA), NIH, and U.S. Veterans Affairs (VA), along with America 
Makes. This group collaborated with grassroots communities as well as hospitals to share information and 
resources during shortages of Personal Protective Equipment (PPE) during the COVID-19 pandemic. Through 
various partnerships, the COVID 3D Trust was able to help assess whether or not different open source PPE 
devices were of sufficient quality to be used in clinical or community settings. In addition, the COVID 3D Trust 
helped maker communities distribute PPE (McCarthy et al., 2021; Bowser et al., 2021). 

Many social structures for low-cost tools, including communities of practice, knowledge commons, and other 
structures, strive to be inclusive of all tool and data users, including those that lack institutional connections, 
resources to attend meetings or otherwise participate in community activities, or familiarity with social dynamics 
and groups. Significant infrastructure, including financial and in-kind support for technologies, community 
management tasks, and inclusion, is required to help these knowledge commons thrive. 

In addition to the social support structures mentioned above—which often emerged out of low-cost tool 
communities—a number of already-existing support structures might expand to accommodate low-cost tool 
perspectives. 
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Case Study 4: The Gathering for Open Science Hardware (GOSH) 
Individuals and groups around the world were developing and sharing open hardware designs 
for science, however, no official network existed until the first Gathering for Open Science 
Hardware (GOSH) in 2016.  With attendees representing perspectives from academic 
research, education, community-based work, and entrepreneurial backgrounds, this initial 
gathering led to the development of a set of core values (the GOSH Manifesto) for open 
science hardware and the formalization of a community dedicated to making open science 
hardware ubiquitous by 2025 (GOSH Manifesto, n.d.).

Figure 13

Image Source: “GOSH 20181012-(Day3-GROW)-5.X 6.Factory reception -Social-Taken by Laura Olalde 
(144)” by GOSH Community is licensed under CC0 1.0

GOSH members use the GOSH forum and blog to discuss activities and opportunities, share 
skills, and discuss issues around key topics like licensing. The GOSH community developed 
a roadmap in 2017 and an action plan in 2018, both of which outline concrete strategies the 
community can take to increase open hardware’s impact on science (Gathering for Open 
Science Hardware, 2018). The presence of the GOSH network has helped advance the use 
of open source hardware in many sectors, including community science and academia. 
In addition to global gatherings, GOSH hosts targeted workshops to develop skill sets or 
address certain issues. Outcomes are shared online to seed further collaboration and solicit 

https://flickr.com/photos/goshcommunity/
https://creativecommons.org/publicdomain/zero/1.0/
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feedback from members, as well as to amplify the reach of the materials and to build a 
member base.

In addition to sharing knowledge, the GOSH community helps open science hardware gain 
legitimacy in the eyes of scientific institutions (Arancio, 2020). For example, to gain trust from 
academia, GOSH develops research publications that demonstrate the quality performance 
of open science hardware. The community has also developed use cases for academic, 
community, and media audiences. GOSH now has members in universities, other research 
institutions, non-profits, and policy communities.

GOSH is a social structure that builds legitimacy, shares knowledge, and mobilizes resources 
to promote both the development and use of open science hardware. Supporting both 
general-purpose communities, such as GOSH, as well as platforms specific to a particular 
research discipline, can support data quality outcomes by providing spaces for discussion 
and targeted work around the tools themselves, their digital environment, and the regulatory 
landscape, among other topics.
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Conclusion
Low-cost tools have the potential to accelerate scientific discovery, collect new types of data to answer diverse 
research questions, and broaden participation in science to include new stakeholder groups. However, the current 
misconception that low-cost tools produce lower quality data still serves as a barrier to their widespread uptake 
and adoption.

Low-cost tools typically reshape several dimensions of data such as amount, type, and accuracy. Drops in one 
dimension may be compensated for by gains in a different dimension. Thus low-cost tools do not necessarily 
produce lower quality data, instead they change data quality. Furthermore, low-cost tools can compare in 
performance to more expensive tools and have additional benefits, such as the collection of new types of data, 
participation of new communities in science, and improved science infrastructure. Misconceptions can be shifted 
by re-defining data quality as multidimensional and dynamic through fitness for use. 

Consequently, key dimensions of data quality can be effectively communicated and assessed using a “fitness for 
use” perspective. 

Using fitness for use as an overarching framework, we have identified opportunities for elevating data quality to 
ensure fitness for diverse uses that focus on: improving the tools themselves; building out a digital environment, 
including one that considers hardware-software dependencies; ensuring that standards and the regulatory 
context do not unduly limit the use of low-cost tools and data; and exploring how a social context facilitates 
knowledge sharing and trusted communication across users and uses. 

Recognizing these opportunities, there are a number of actions that government and policy audiences can take to 
support these data quality solutions and elevate the value of low-cost tools:

1) Prioritize the use of open source hardware—tools open in their design and open to being changed 

and shared. From the perspective of data quality and fitness for use, open source hardware has a number 
of benefits over low-cost, proprietary equivalents. Open practices make understanding, reviewing, and 
replicating tools and experimental protocols more easily accessible through publicly available design files. 
With more participation in and access to information on scientific tools, experiments can be better replicated, 
resulting in improved scientific reproducibility. In addition, open source hardware is licensed so that tools can 
be modified; this can improve mismatch in tool availability and data quality as open source hardware can be 
customized to fit a particular intended use. 

2) Invest in accessible infrastructure to improve the digital environment of low-cost tools. A tool’s 
particular digital environment is often provided by increasingly sophisticated software models and accessible 
data repositories to support data quality assurance. Making different software models more accessible, such 
as publishing them as open source, is one opportunity for elevating the value of low-cost and open source 
tools across a range of scientific research domains. Existing data aggregation facilities or data centers could 
also clarify opportunities for (re)publishing open and FAIR data from low-cost tools. In particular, promoting 
the use of FAIR principles—including a more complete documentation along the data life cycle--can build 
trust across a range of stakeholders. It may also be helpful for existing groups providing data management 
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guidelines to citizen and community based groups, such as the NASA community working on citizen science 
data management and documentation, to explicitly consider relevance to stakeholders using low-cost tools. 
U.S. federal agencies can also partner with non-governmental groups to help develop infrastructures for 
generating and elevating the value of data from low-cost tools. For example, Fundación Española para la 
Ciencia y Tecnología (Spanish Foundation for Science and Technology) helped improve iNaturalist’s open 
source software.

Figure 14

Source Image: Rigon, Dario. Software background. Website codes on computer monitor. Software development. Programmer 
developer screen. Machine learning code. Java code. Php code. Linux code. n.d. shutterstock.com

3) Create flexible assessment processes that take the burden off tool users and recognize a range 

of desired use cases. The development of tiered and/or technology agnostic standards and regulatory 
frameworks and guidelines can make assessing fitness for use of low-cost tools more accessible to different 
intended use cases. Of importance is the inclusion of the full range of user communities in the development 
of standards. International standards organizations such as ISO and IEEE could play a role in spearheading 
some initiatives. Although it is important that these evaluations and assessments are accessible to tool 
users, supporting third party assessment of “formal” communities, in government agencies and “informal” 
community groups, can take the burden of assessment off tool users who may not have the resources 
or expertise to assess data quality. In addition, beyond formal assessment processes such as regulatory 
standards, the scientific and technical community should recognize the value of academic and community-
based peer review processes for evaluating data quality and fitness for use.

http://shutterstock.com
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4) Support social structures that ensure access to low-cost tools for all those interested in doing 

research, including those with limited resources. The uptake of a tool depends on social networks—
informal and formal—of users, supporters, promoters, and regulators among others. With adequate 
governance and support, these social networks can accelerate the development of trust around these 
tools. Policy communities and regulators who are data users can engage with low-cost tool data stewards 
and intermediaries to communicate data quality requirements for different uses. Supporting existing social 
structures that strive to be inclusive of limited resource groups, such as professional networks and online 
platforms can foster trust for a range of low-cost tool users and data users. Leveraging other existing social 
support structures, including extension programs and Digital.gov communities of practice, can also help 
disciplinary and government communities discuss key aspects of low-cost tools that are relevant to their 
work.  

The use of low-cost tools in scientific research is contingent upon trust in the quality of data they produce. By 
developing new, flexible ways to define, analyze, communicate, and build community around data quality and 
providing the resources and infrastructure to do so, the challenges of using low-cost tools in scientific research 
can be addressed. With these solutions in place, low-cost tools can facilitate more equitable and innovative ways 
of doing science.
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